Ideal analytic sets

Łukasz Mazurkiewicz Szymon Żeberski

Wrocław University of Science and Technology lukasz.mazurkiewicz@pwr.edu.pl

Winter School in Abstract Analysis 2023 03.02.2023

< □ > < □ > < □ > < □ >

Definition

A set $A \subseteq X$ is called Σ_1^1 -complete if A is analytic and for every Polish space Y and every analytic $B \subseteq Y$ there is a map $f: Y \to X$ satisfying $f^{-1}[A] = B$.

<ロト < 四ト < 回ト < 回ト < 回ト -

æ

Definition

A set $A \subseteq X$ is called Σ_1^1 -complete if A is analytic and for every Polish space Y and every analytic $B \subseteq Y$ there is a map $f: Y \to X$ satisfying $f^{-1}[A] = B$.

Definition

Let $A \subseteq X$, $B \subseteq Y$. We say, that B is *Borel reducible* to A if there exists a Borel map $f : Y \to X$ such that $f^{-1}[A] = B$.

・ロト ・ 日 ・ ・ ヨ ・ ・

Definition

A set $A \subseteq X$ is called Σ_1^1 -complete if A is analytic and for every Polish space Y and every analytic $B \subseteq Y$ there is a map $f: Y \to X$ satisfying $f^{-1}[A] = B$.

Definition

Let $A \subseteq X$, $B \subseteq Y$. We say, that B is *Borel reducible* to A if there exists a Borel map $f : Y \to X$ such that $f^{-1}[A] = B$.

Fact

If analytic set B is Borel reducible to A and B is Σ_1^1 -complete, then A is also Σ_1^1 complete.

<ロト < 回 > < 回 > < 回 > :

For $B \subseteq \omega$ we write

$$FS(B) = \left\{ \sum_{n \in F} n : F \subseteq B, 0 < |F| < \omega
ight\}.$$

Definition

A set $A \subseteq \omega$ is called an *IP-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

2

For $B \subseteq \omega$ we write

$$FS(B) = \left\{ \sum_{n \in F} n : F \subseteq B, 0 < |F| < \omega
ight\}.$$

Definition

A set $A \subseteq \omega$ is called an *IP-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

Fact

Let $\mathcal H$ denote the family of all non-IP-sets. $\mathcal H$ is an ideal, called Hindman ideal.

< ロ > < 四 > < 回 > < 回 > <</p>

크

For $B \subseteq \omega$ we write

$$FS(B) = \left\{ \sum_{n \in F} n : F \subseteq B, 0 < |F| < \omega
ight\}$$

Definition

A set $A \subseteq \omega$ is called an *IP-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

Fact

Let $\mathcal H$ denote the family of all non-IP-sets. $\mathcal H$ is an ideal, called Hindman ideal.

Fact

 $\mathcal H$ is a coanalytic subset of $2^{\omega^{<\omega}}$.

Theorem

 \mathcal{H} is Π_1^1 -complete.

ヘロト ヘ部ト ヘヨト ヘヨト

Theorem

 \mathcal{H} is Π_1^1 -complete.

Proof.

Let us fix an injection $\alpha : \omega^{<\omega} \to \{2^{2n} : n \in \omega\}$ satisfying

 $\boldsymbol{s} \preceq \boldsymbol{t} \Rightarrow \alpha(\boldsymbol{s}) \leq \alpha(\boldsymbol{t}).$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト ー

= 990

Theorem

 \mathcal{H} is Π_1^1 -complete.

Proof.

Let us fix an injection $\alpha: \omega^{<\omega} \to {2^{2n}: n \in \omega}$ satisfying

$$s \leq t \Rightarrow \alpha(s) \leq \alpha(t).$$

Define reduction $f : Tree_{\omega} \rightarrow P(\omega)$ with formula

$$f(T) = \bigcup_{\boldsymbol{s}\in T} FS(\{\alpha(\boldsymbol{s} \upharpoonright \boldsymbol{k}) : \boldsymbol{k} \le |\boldsymbol{s}|\}).$$

< ロ > < 四 > < 回 > < 回 > <</p>

표 문 표

$\text{Ideal}\ \mathcal{D}$

Analogously as before, for $\pmb{B}\subseteq \omega$

$$D(B) = \{b - a : b > a, a, b, \in B\}.$$

Definition

A set $A \subseteq \omega$ is called a *D-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

Ξ.

$\text{Ideal} \ \mathcal{D}$

Analogously as before, for $\pmb{B}\subseteq \omega$

$$D(B) = \{b - a : b > a, a, b, \in B\}.$$

Definition

A set $A \subseteq \omega$ is called a *D-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

Fact

Let \mathcal{D} denote the family of all non-D-sets. \mathcal{D} is a proper subideal of \mathcal{H} .

< ロ > < 四 > < 回 > < 回 > <</p>

Ξ.

$\text{Ideal} \ \mathcal{D}$

Analogously as before, for $\pmb{B}\subseteq \omega$

$$D(B) = \{b - a : b > a, a, b, \in B\}.$$

Definition

A set $A \subseteq \omega$ is called a *D-set* if there is an infinite $B \subseteq A$ such that $FS(B) \subseteq A$.

Fact

Let \mathcal{D} denote the family of all non-D-sets. \mathcal{D} is a proper subideal of \mathcal{H} .

Fact

 \mathcal{D} is a coanalytic subset of $2^{\omega^{<\omega}}$.

< //>
</ >
</ >
</ >

$\text{Ideal} \ \mathcal{D}$

Theorem

 \mathcal{D} is Π_1^1 -complete.

ヘロト ヘ部ト ヘヨト ヘヨト

$\text{Ideal}\ \mathcal{D}$

Theorem

 \mathcal{D} is Π_1^1 -complete.

Proof.

Let us fix an injection $\alpha: \omega^{<\omega} \to \{2^n : n \in \omega\}$ satisfying

 $\boldsymbol{s} \preceq \boldsymbol{t} \Rightarrow \alpha(\boldsymbol{s}) \leq \alpha(\boldsymbol{t}).$

Łukasz Mazurkiewicz Ideal analytic sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$\text{Ideal}\ \mathcal{D}$

Theorem

 \mathcal{D} is Π_1^1 -complete.

Proof.

Let us fix an injection $\alpha: \omega^{<\omega} \to \{2^n : n \in \omega\}$ satisfying

$$\boldsymbol{s} \leq \boldsymbol{t} \Rightarrow \alpha(\boldsymbol{s}) \leq \alpha(\boldsymbol{t}).$$

Define reduction $f: Tree_{\omega} \rightarrow P(\omega)$ with formula

$$f(T) = \bigcup_{\boldsymbol{s}\in T} D(\{\alpha(\boldsymbol{s} \upharpoonright \boldsymbol{k}) : \boldsymbol{k} \le |\boldsymbol{s}|\}).$$

ヘロト ヘ部ト ヘヨト ヘヨト

크

Silver trees

Theorem

The set of all trees containing a Silver tree, i.e.

$$\left\{ T \in \mathit{Tree}_2 : \exists x \in 2^{\omega} \exists A \in [\omega]^{\omega} \forall s \in 2^{<\omega} (s = x \upharpoonright |s| \Rightarrow s \in T) \right\},$$

is Σ_1^1 -complete.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト ー

3

Silver trees

Theorem

The set of all trees containing a Silver tree, i.e.

$$\left\{ T \in \mathit{Tree}_2 : \exists x \in 2^{\omega} \exists A \in [\omega]^{\omega} \forall s \in 2^{<\omega} (s = x \upharpoonright |s| \Rightarrow s \in T)
ight\},$$

is Σ_1^1 -complete.

Proof.

For
$$a = (a_0 a_1 a_2 \dots a_k)_2 \in \omega$$
, $s = (s_0 s_1 \dots s_l) \in 2^{<\omega}$ denote

$$\tilde{a} = (a_0 a_0 a_1 a_1 \dots a_k a_k)$$

 $\beta(s) = \{01\tilde{s}_0 01\underline{i}_0 01\tilde{s}_1 01\underline{i}_1 \dots 01\tilde{s}_l 01\underline{i}_l : i_0, i_1, \dots \in \{0, 1\}\}$ Now define reduction $f : Tree_{\omega} \to Tree_2$ with formula

$$"f(T) = \bigcup_{s \in T} \beta(s)"$$

Silver trees - alternative approach

Theorem (Kechris-Louveau-Woodin)

Let $\mathcal{I} \subseteq K(X)$ be a coanalytic σ -ideal of compact sets. Then \mathcal{I} is either G_{δ} or Π_1^1 -complete.

<ロト < 四ト < 回ト < 回ト < 回ト -

크

Silver trees - alternative approach

Theorem (Kechris-Louveau-Woodin)

Let $\mathcal{I} \subseteq K(X)$ be a coanalytic σ -ideal of compact sets. Then \mathcal{I} is either G_{δ} or Π_1^1 -complete.

Fact

Family of all trees containing a Silver tree is Σ_1^1 -complete iff family of all bodies of trees containing a Silver tree is Σ_1^1 -complete.

Proof.

One way take f(T) = [T], the other way $f(A) = \{\sigma \upharpoonright k : \sigma \in A, k \in \omega\}.$

<ロト < 回 > < 回 > < 回 > :

Silver trees - alternative approach

Theorem (Kechris-Louveau-Woodin)

Let $\mathcal{I} \subseteq K(X)$ be a coanalytic σ -ideal of compact sets. Then \mathcal{I} is either G_{δ} or Π_1^1 -complete.

Fact

Family of all trees containing a Silver tree is Σ_1^1 -complete iff family of all bodies of trees containing a Silver tree is Σ_1^1 -complete.

Proof.

One way take f(T) = [T], the other way $f(A) = \{\sigma \upharpoonright k : \sigma \in A, k \in \omega\}.$

Using above for $X = 2^{\omega}$ and \mathcal{I} =compact sets, which do not contain a body of Silver tree, one gets result from the previous slide.

Rafał Filipów (2013)

On Hindman spaces and the Bolzano-Weierstrass property *Topology Appl.* 160, no. 15

Alexander S. Kechris (1995) Classical Descriptive Set Theory Springer-Verlag New York, Inc.

イロト イヨト イヨト イヨト

Thank You for attention

◆ロ> ◆母> ◆ヨ> ◆ヨ> 「ヨ」 のへで